Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Cold hardiness in plants: molecular genetics, cell biology and physiology. Seventh International Plant Cold Hardiness Seminar, Sapporo, Japan, 10-15 July 2004.

Book cover for Cold hardiness in plants: molecular genetics, cell biology and physiology. Seventh International Plant Cold Hardiness Seminar, Sapporo, Japan, 10-15 July 2004.

Description

This book contains 16 papers presenting the latest research findings on plant freezing and chilling stress from major laboratories around the world. They focus on various aspects of molecular genetics and, in many cases, the use of transgenic plants to further our understanding of plant cold hardiness at the molecular level. Other papers include: vernalization genes in winter cereals; global analy...

Metrics

Chapter 3 (Page no: 30)

Barley contains a large CBF gene family associated with quantitative cold-tolerance traits.

In a study conducted to determine the relationship between CBF genes and low-temperature (LT) tolerance of barley (Hordeum vulgare), results showed that: (1) barley has a large and complex CBF family; (2) the barley CBF family is representative in both size and complexity of CBF families of other cereals; (3) barley HvCBFs display functional characteristics of CBF factors; (4) differences in expression, rather than the encoded polypeptide, are a more likely source of HvCBF allelic variation affecting LT tolerance; and (5) two CBF gene clusters are candidates for Triticeae LT-tolerance QTLs. The results collectively suggest that as in dicots, CBFs are also an important component of the cold response pathway of cereals.

Other chapters from this book

Chapter: 1 (Page no: 1) Global analysis of gene networks to solve complex abiotic stress responses. Author(s): Shinozaki, K. Yamaguchi-Shinozaki, K.
Chapter: 2 (Page no: 11) The CBF cold response pathways of Arabidopsis and tomato. Author(s): Vogel, J. T. Cook, D. Fowler, S. G. Thomashow, M. F.
Chapter: 4 (Page no: 53) Structural organization of barley CBF genes coincident with a QTL for cold hardiness. Author(s): Stockinger, E. J. Cheng, H. Skinner, J. S.
Chapter: 5 (Page no: 64) The genetic basis of vernalization responses in barley. Author(s): Cooper, L. L. D. Zitzewitz, J. von Skinner, J. S. Szűcs, P. Karsai, I. Francia, E. Stanca, A. M. Pecchioni, N. Laurie, D. A. Chen, T. H. H. Hayes, P. M.
Chapter: 6 (Page no: 76) Vernalization genes in winter cereals. Author(s): Kane, N. A. Danyluk, J. Sarhan, F.
Chapter: 7 (Page no: 88) A bulk segregant approach to identify genetic polymorphisms associated with cold tolerance in lucerne. Author(s): Castonguay, Y. Cloutier, J. Laberge, S. Bertrand, A. Michaud, R.
Chapter: 8 (Page no: 103) Ectopic overexpression of AtCBF1 in potato enhances freezing tolerance. Author(s): Pino, M. T. Skinner, J. S. Jeknić, Z. Park, E. J. Hayes, P. M. Chen, T. H. H.
Chapter: 9 (Page no: 124) Overexpression of a heat-inducible apx gene confers chilling tolerance to rice plants. Author(s): Sato, Y. Saruyama, H.
Chapter: 10 (Page no: 138) Physiological and morphological alterations associated with development of freezing tolerance in the moss Physcomitrella patens. Author(s): Minami, A. Nagao, M. Arakawa, K. Fujikawa, S. Takezawa, D.
Chapter: 11 (Page no: 153) Control of growth and cold acclimation in silver birch. Author(s): Aalto, M. K. Palva, E. T.
Chapter: 12 (Page no: 167) The role of the CBF-dependent signalling pathway in woody perennials. Author(s): Benedict, C. Skinner, J. S. Meng, R. Chang, Y. Bhalerao, R. Finn, C. Chen, T. H. H. Hurry, V.
Chapter: 13 (Page no: 181) Functional role of winter-accumulating proteins from mulberry tree in adaptation to winter-induced stresses. Author(s): Fujikawa, S. Ukaji, N. Nagao, M. Yamane, K. Takezawa, D. Arakawa, K.
Chapter: 14 (Page no: 203) The role of compatible solutes in plant freezing tolerance: a case study on raffinose. Author(s): Hincha, D. K. Zuther, E. Hundertmark, M. Heyer, A. G.
Chapter: 15 (Page no: 219) Dehydration in model membranes and protoplasts: contrasting effects at low, intermediate and high hydrations. Author(s): Koster, K. L. Bryant, G.
Chapter: 16 (Page no: 235) Effect of plasma membrane-associated proteins on acquisition of freezing tolerance in Arabidopsis thaliana. Author(s): Tominaga, Y. Nakagawara, C. Kawamura, Y. Uemura, M.