Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.


Continuing to use  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Nutrient digestion and utilization in farm animals: modelling approaches.

Book cover for Nutrient digestion and utilization in farm animals: modelling approaches.


This book contains 34 chapters on nutrition physiology and presents scientific research in modelling nutrient digestion and utilization in domestic animals, including cattle, sheep, pigs, poultry and fishes. It is divided into 6 parts that cover fermentation, absorption and passage; growth and development; mineral metabolism; methodology and model development; environmental impacts and animal prod...


Chapter 32 (Page no: 383)

The Nordic dairy cow model, Karoline - description.

The Karoline model described in this study is a whole-animal cow model intended to be used by the advisory services in the Nordic countries, i.e. Denmark, Finland, Iceland, Norway and Sweden. Karoline is a dynamic, deterministic and mechanistic simulation model of lactating dairy cows. It consists of two submodels: a digestion and a metabolism model. The first describes digestion in the forestomachs, the small intestine and the hindgut, while the second comprises portal-drained viscera (PDV), liver, extracellular fluid and mammary gland, as well as muscle, connective and adipose tissues. The model inputs are live weight (LW), week of lactation, rate of dry matter intake (DMI) and DM composition. Parameters describing the feed are crude protein (CP), crude fat, potentially degradable neutral detergent fibre (NDF), totally indigestible NDF, starch (St), fermentation products and a rest fraction (RF; sugars and other organic matter (OM) are not accounted for). The CP fraction is further divided into NH3, amino acids (AA), peptides (PEP), soluble protein (SP), insoluble protein (ISP) and totally indigestible protein. Rate constants for ruminal degradation of NDF, protein and St also have to be provided. In the digestion submodel, ruminal degradation and passage of carbohydrates and protein is described by using two-compartment models. Rates of passage from the rumen are regulated by the NDF intake per kg LW. The rate of NDF degradation in the rumen is regulated by the ratio of non-structural carbohydrates to NDF. The fermentation pattern in the rumen is predicted by stoichiometric equations adjusted for feeding level and crude fat in concentrates. The efficiency of microbial protein synthesis (MPS) depends on the ruminal level of NH3. In the metabolism submodel, nutrient partitioning between tissues as well as a number of intracellular transactions are regulated by the stage of lactation. The rates of nutrient oxidation are determined by the need of adenosine triphosphate (ATP) for tissue maintenance and product syntheses. The heat production (HP) in individual segments of the model is calculated according to the law of energy conservation. Animal performance is calculated from relevant nutrient and energy flows when the model has reached steady state. To the extent that the output from Karoline is reliable, the simulated animal performance (e.g. milk yield (MY), body weight (BW) change, faecal, urinary and gaseous wastes, HP) expresses the real value of a given feed in a given situation. Thus, Karoline is a tool of great potential value to advisory services .

Other chapters from this book

Introduction Introduction: history, appreciation and future focus. Author(s): France, J.
Chapter: 1 (Page no: 1) The Nordic dairy cow model, Karoline - development of volatile fatty acid sub-model. Author(s): Sveinbjörnsson, J. Huhtanen, P. Udén, P.
Chapter: 2 (Page no: 15) A three-compartment model of transmembrane fluxes of valine across the tissues of the hindquarters of growing lambs infected with Trichostrongylus colubriformis. Author(s): Roy, N. C. Bermingham, E. N. McNabb, W. C.
Chapter: 3 (Page no: 28) Using rumen degradation model to evaluate microbial protein yield and intestinal digestion of grains in cattle. Author(s): Paengkoum, P.
Chapter: 4 (Page no: 33) Simulation of rumen particle dynamics using a non-steady state model of rumen digestion and nutrient availability in dairy cows fed sugarcane. Author(s): Collao-Saenz, E. A. Bannink, A. Kebreab, E. France, J. Dijkstra, J.
Chapter: 5 (Page no: 40) Modelling fluxes of volatile fatty acids from rumen to portal blood. Author(s): Nozière, P. Hoch, T.
Chapter: 6 (Page no: 48) The role of rumen fill in terminating grazing bouts of dairy cows under continuous stocking. Author(s): Taweel, H. Z. Tas, B. M. Tamminga, S. Dijkstra, J.
Chapter: 7 (Page no: 54) Functions for microbial growth. Author(s): López, S. Prieto, M. Dijkstra, J. Kebreab, E. Dhanoa, M. S. France, J.
Chapter: 8 (Page no: 69) Obtaining information on gastric emptying patterns in horses from appearance of an oral acetaminophen dose in blood plasma. Author(s): Cant, J. P. Walsh, V. N. Geor, R. J.
Chapter: 9 (Page no: 84) A model to evaluate beef cow efficiency. Author(s): Tedeschi, L. O. Fox, D. G. Baker, M. J. Long, K. L.
Chapter: 10 (Page no: 99) Prediction of energy requirement for growing sheep with the Cornell Net Carbohydrate and Protein System. Author(s): Cannas, A. Tedeschi, L. O. Atzori, A. S. Fox, D. G.
Chapter: 11 (Page no: 114) Prediction of body weight and composition from body dimension measurements in lactating dairy cows. Author(s): Yan, T. Agnew, R. E. Mayne, C. S. Patterson, D. C.
Chapter: 12 (Page no: 121) Relationships between body composition and ultrasonic measurements in lactating dairy cows. Author(s): Agnew, R. E. Yan, T. Patterson, D. C. Mayne, C. S.
Chapter: 13 (Page no: 127) Empirical model of dairy cow body composition. Author(s): Martin, O. Sauvant, D.
Chapter: 14 (Page no: 135) Simulating chemical and tissue composition of growing beef cattle: from the model to the tool. Author(s): Hoch, T. Pradel, P. Champciaux, P. Agabriel, J.
Chapter: 15 (Page no: 144) Representation of fat and protein gain at low levels of growth and improved prediction of variable maintenance requirement in a ruminant growth and composition model. Author(s): Oltjen, J. W. Sainz, R. D. Pleasants, A. B. Soboleva, T. K. Oddy, V. H.
Chapter: 16 (Page no: 160) Growth patterns of Nellore vs British beef cattle breeds assessed using a dynamic, mechanistic model of cattle growth and composition. Author(s): Sainz, R. D. Barioni, L. G. Paulino, P. V. Valadares Filho, S. C. Oltjen, J. W.
Chapter: 17 (Page no: 171) A kinetic model of phosphorus metabolism in growing sheep. Author(s): Dias, R. S. Roque, A. R. Nascimento Filho, V. F. Vitti, D. M. S. S. Bueno, I. C. S.
Chapter: 18 (Page no: 180) Dynamic simulation of phosphorus utilization in salmonid fish. Author(s): Hua, K. Cant, J. P. Bureau, D. P.
Chapter: 19 (Page no: 192) Development of a dynamic model of calcium and phosphorus flows in layers. Author(s): Dijkstra, J. Kebreab, E. Kwakkel, R. P. France, J.
Chapter: 20 (Page no: 211) Estimating the risk of hypomagnesaemic tetany in dairy herds. Author(s): Bell, S. T. McKinnon, A. E. Sykes, A. R.
Chapter: 21 (Page no: 229) Modelling the effects of environmental stressors on the performance of growing pigs: from individuals to populations. Author(s): Wellock, I. J. Emmans, G. C. Kyriazakis, I.
Chapter: 22 (Page no: 242) Empirical modelling through meta-analysis vs mechanistic modelling. Author(s): Sauvant, D. Martin, O.
Chapter: 23 (Page no: 251) Iterative development, evaluation and optimal parameter estimation of a dynamic simulation model: a case study. Author(s): Barioni, L. G. Oltjen, J. W. Sainz, R. D.
Chapter: 24 (Page no: 257) Segmented, constrained, non-linear, multi-objective, dynamic optimization methodology applied to the dairy cow ration formulation problem. Author(s): Boston, R. C. Hanigan, M. D.
Chapter: 25 (Page no: 275) A model to simulate the effects of different dietary strategies on the sustainability of a dairy farm system. Author(s): Prado, A. del Scholefield, D. Brown, L.
Chapter: 26 (Page no: 281) Advantages of a dynamical approach to rumen function to help to resolve environmental issues. Author(s): Bannink, A. Dijkstra, J. Kebreab, E. France, J.
Chapter: 27 (Page no: 299) Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. Author(s): Kebreab, E. France, J. McBride, B. W. Odongo, N. Bannink, A. Mills, J. A. N. Dijkstra, J.
Chapter: 28 (Page no: 314) Investigating daily changes in food intake by ruminants. Author(s): Dryden, G. M.
Chapter: 29 (Page no: 328) An ingredient-based input scheme for Molly. Author(s): Hanigan, M. D. Bateman, H. G. Fadel, J. G. McNamara, J. P. Smith, N. E.
Chapter: 30 (Page no: 349) Metabolic control: improvement of a dynamic model of lactational metabolism in early lactation. Author(s): McNamara, J. P.
Chapter: 31 (Page no: 366) Rostock feed evaluation system - an example of the transformation of energy and nutrient utilization models to practical application. Author(s): Chudy, A.
Chapter: 33 (Page no: 407) The Nordic dairy cow model, Karoline - evaluation. Author(s): Danfær, A. Huhtanen, P. Udén, P. Sveinbjörnsson, J. Volden, H.
Chapter: 34 (Page no: 416) A composite model of growth, pregnancy and lactation. Author(s): Vetharaniam, I. Davis, S. R.