Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Modelling nutrient utilization in farm animals.

Book cover for Modelling nutrient utilization in farm animals.

Description

This book presents edited and revised versions of papers presented at the Fifth International Workshop on Modelling Nutrient Utilization in Farm Animals, held at the University of Cape Town, Cape Town, South Africa, 25-28 October 1999. There are 31 chapters and 6 sections entitled ruminal metabolism, absorption and metabolism, growth and development, ruminant production in various situations, nutr...

Metrics

Chapter 4 (Page no: 49)

Simple allometric models to predict rumen feed passage rate in domestic ruminants.

A database was developed from the literature (36 publications) to explore the mechanisms controlling rumen feed passage rate (Kp) and to predict it. The database included the results of 157 different dietary treatments and passage rate measurements with 45 treatments on dry sheep or wethers, 42 on lactating cows, 58 on dry cows, heifers or steers, four on buffaloes, and eight on goats. The treatments were selected by looking for the following requisites: diets with at least 20% forage; no dietary treatments in which the forage was chopped with screens smaller than 1 cm of nominal size; no lactating animals with fewer than 20 days in milk and no animals in the last third of the pregnancy; intake measured and not estimated; marked forage with identical characteristics and physical form of dietary forage; at least three animals per treatment; only chromium or rare earths as markers, given with a single pulse dose; Kp estimated with time-independent models. The choice of predictors was restricted to intake, body weight, dietary and forage CP, NDF and, when available, lignin. The best models found to predict rumen passage rate of the forages are described. The level of intake scaled on metabolic size was a poorer predictor than the level of intake scaled on body weight. The model in which one of the predictors was the level of intake of NDF was preferred because it was biologically more appropriate. No clear differences between chromium and rare-earth markers were found. The curvilinear pattern existing between forage NDF Kp and the level of intake of dietary NDF was explained by changes in the rumen pool size of NDF. When the models obtained from the whole database were applied to the small ruminants (sheep and goats) and the large ruminants (cattle and buffalo) subsets, the separate fits were not significantly better than those calculated on the whole database. Rumen passage rate of concentrates was linearly associated with that of forages. In conclusion, the passage rate of forages and concentrates can be predicted by using the same models and equations for domestic ruminants of different species and body size.

Other chapters from this book

Chapter: 1 (Page no: 11) The role of thermodynamics in controlling rumen metabolism. Author(s): Kohn, R. A. Boston, R. C.
Chapter: 2 (Page no: 25) Modelling lipid metabolism in the rumen. Author(s): Dijkstra, J. Gerrits, W. J. J. Bannink, A. France, J.
Chapter: 3 (Page no: 37) Towards a more accurate representation of fermentation in mathematical models of the rumen. Author(s): Nagorcka, B. N. Gordon, G. L. R. Dynes, R. A.
Chapter: 5 (Page no: 63) Ruminal metabolism of buffersoluble proteins, peptides and amino acids in vitro. Author(s): Udén, P.
Chapter: 6 (Page no: 73) Models to interpret degradation profiles obtained from in vitro and in situ incubation of ruminant feeds. Author(s): López, S. France, J. Dijkstra, J. Dhanoa, M. S.
Chapter: 7 (Page no: 87) Modelling production and portal appearance of volatile fatty acids in dairy cows. Author(s): Bannink, A. Kogut, J. Dijkstra, J. France, J. Tamminga, S. Vuuren, A. M. van
Chapter: 8 (Page no: 103) Modelling energy expenditure in pigs. Author(s): Milgen, J. van Noblet, J.
Chapter: 9 (Page no: 115) Aspects of modelling kidney dynamics. Author(s): Robson, B. Vlieg, M.
Chapter: 10 (Page no: 127) Evaluation of a representation of the limiting amino acid theory for milk protein synthesis. Author(s): Hanigan, M. D. France, J. Crompton, L. A. Bequette, B. J.
Chapter: 11 (Page no: 145) Multiple-entry urea kinetic model: effects of incomplete data collection. Author(s): Zuur, G. Russell, K. Lobley, G. E.
Chapter: 12 (Page no: 163) Evaluation of a growth model of preruminant calves and modifications to simulate shortterm responses to changes in protein intake. Author(s): Gerrits, W. J. J. Togt, P. L. van der Dijkstra, J. France, J.
Chapter: 13 (Page no: 175) Simulation of the development of adipose tissue in beef cattle. Author(s): Sainz, R. D. Hasting, E.
Chapter: 14 (Page no: 183) A simple nutrient-based production model for the growing pig. Author(s): Boisen, S.
Chapter: 15 (Page no: 197) Second-generation dynamic cattle growth and composition models. Author(s): Oltjen, J. W. Pleasants, A. B. Soboleva, T. K. Oddy, V. H.
Chapter: 16 (Page no: 211) Modelling interactions between cow milk yield and growth of its suckling calf. Author(s): Blanc, F. Agabriel, J. Sabatier, P.
Chapter: 17 (Page no: 227) A mechanistic dynamic model of beef cattle growth. Author(s): Hoch, T. Agabriel, J.
Chapter: 18 (Page no: 241) Modelling nutrient utilization in growing cattle subjected to short or long periods of moderate to severe undernutrition. Author(s): Witten, G. Q. Richardson, F. D.
Chapter: 19 (Page no: 253) An integrated cattle and crop production model to develop whole-farm nutrient management plans. Author(s): Tylutki, T. P. Fox, D. G.
Chapter: 20 (Page no: 263) Modelling nutrient utilization by livestock grazing semiarid rangeland. Author(s): Richardson, F. D. Hahn, B. D. Schoeman, S. J.
Chapter: 21 (Page no: 281) Using the cornell net carbohydrate and protein system model to evaluate the effects of variation in maize silage quality on a dairy farm. Author(s): Tylutki, T. P. Fox, D. G. McMahon, M. McMahon, P.
Chapter: 22 (Page no: 289) Challenge and improvement of a model of post-absorptive metabolism in dairy cattle. Author(s): McNamara, J. P. Phillips, G. J.
Chapter: 23 (Page no: 303) A rodent model of protein turnover to determine protein synthesis, amino acid channelling and recycling rates in tissues. Author(s): Johnson, H. A. Baldwin, R. L. Calvert, C. C.
Chapter: 24 (Page no: 317) Modelling relationships between homoeorhetic and homoeostatic control of metabolism: application to growing pigs. Author(s): Sauvant, D. Lovatto, P. A.
Chapter: 25 (Page no: 329) Model for the interpretation of energy metabolism in farm animals. Author(s): Chudy, A.
Chapter: 26 (Page no: 347) Linear models of nitrogen utilization in dairy cows. Author(s): Kebreab, E. Allison, R. Mansbridge, R. Beever, D. E. France, J.
Chapter: 27 (Page no: 353) Isotope dilution models for partitioning amino acid uptake by the liver, mammary gland and hindlimb tissues of ruminants. Author(s): Crompton, L. A. France, J. Bequette, B. J. Maas, J. A. Hanigan, M. D. Lomax, M. A. Dijkstra, J.
Chapter: 28 (Page no: 361) The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: the CPM dairy project. Author(s): Boston, R. C. Fox, D. G. Sniffen, C. Janczewski, E. Munson, R. Chalupa, W.
Chapter: 29 (Page no: 379) The utilization of prediction models to optimize farm animal production systems: the case of a growing pig model. Author(s): Bailleul, P. J. dit Bernier, J. F. Milgen, J. van Sauvant, D. Pomar, C.
Chapter: 30 (Page no: 393) A pig model for feed evaluation. Author(s): Danfær, A.

Chapter details

  • Author Affiliation
  • Dipartimento di Scienze Zootecniche, University of Sassari, 07100 Sassari, Sardinia, Italy.
  • Year of Publication
  • 2000
  • ISBN
  • 9780851994499
  • Record Number
  • 20083014686