Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Modelling nutrient utilization in farm animals.

Book cover for Modelling nutrient utilization in farm animals.

Description

This book presents edited and revised versions of papers presented at the Fifth International Workshop on Modelling Nutrient Utilization in Farm Animals, held at the University of Cape Town, Cape Town, South Africa, 25-28 October 1999. There are 31 chapters and 6 sections entitled ruminal metabolism, absorption and metabolism, growth and development, ruminant production in various situations, nutr...

Metrics

Chapter 5 (Page no: 63)

Ruminal metabolism of buffersoluble proteins, peptides and amino acids in vitro.

A complex mechanistic model of soluble protein degradation was developed and fitted to literature data of in vitro rumen casein (CAS) and acid-hydrolysed casein (AHCAS) fermentation. Feed amino acid escape was estimated from this model and was compared with estimates made with a simple model of substrate degradation. The complex model could be reasonably fitted to the data set, assuming current understanding of ruminal protein degradation. It included five state variables and both mass action and Michaelis-Menten kinetics. Rates for bacterial extracellular degradation of CAS and subsequent uptake of peptides (PEP) were relatively similar; 1.46 and 0.88 h-1, respectively. Ruminal escape was also estimated to be relatively similar for CAS and AHCAS, 26 and 23%, respectively. Estimating ruminal protein degradation using a very aggregated model can be highly inaccurate, particularly when the observation time period is too short and protein-PEP degradation rate is low. It was believed that, if monitoring both protein and PEP, a model could be fitted which would be more likely to estimate escape, independent of observation period length.

Other chapters from this book

Chapter: 1 (Page no: 11) The role of thermodynamics in controlling rumen metabolism. Author(s): Kohn, R. A. Boston, R. C.
Chapter: 2 (Page no: 25) Modelling lipid metabolism in the rumen. Author(s): Dijkstra, J. Gerrits, W. J. J. Bannink, A. France, J.
Chapter: 3 (Page no: 37) Towards a more accurate representation of fermentation in mathematical models of the rumen. Author(s): Nagorcka, B. N. Gordon, G. L. R. Dynes, R. A.
Chapter: 4 (Page no: 49) Simple allometric models to predict rumen feed passage rate in domestic ruminants. Author(s): Cannas, A. Soest, P. J. van
Chapter: 6 (Page no: 73) Models to interpret degradation profiles obtained from in vitro and in situ incubation of ruminant feeds. Author(s): López, S. France, J. Dijkstra, J. Dhanoa, M. S.
Chapter: 7 (Page no: 87) Modelling production and portal appearance of volatile fatty acids in dairy cows. Author(s): Bannink, A. Kogut, J. Dijkstra, J. France, J. Tamminga, S. Vuuren, A. M. van
Chapter: 8 (Page no: 103) Modelling energy expenditure in pigs. Author(s): Milgen, J. van Noblet, J.
Chapter: 9 (Page no: 115) Aspects of modelling kidney dynamics. Author(s): Robson, B. Vlieg, M.
Chapter: 10 (Page no: 127) Evaluation of a representation of the limiting amino acid theory for milk protein synthesis. Author(s): Hanigan, M. D. France, J. Crompton, L. A. Bequette, B. J.
Chapter: 11 (Page no: 145) Multiple-entry urea kinetic model: effects of incomplete data collection. Author(s): Zuur, G. Russell, K. Lobley, G. E.
Chapter: 12 (Page no: 163) Evaluation of a growth model of preruminant calves and modifications to simulate shortterm responses to changes in protein intake. Author(s): Gerrits, W. J. J. Togt, P. L. van der Dijkstra, J. France, J.
Chapter: 13 (Page no: 175) Simulation of the development of adipose tissue in beef cattle. Author(s): Sainz, R. D. Hasting, E.
Chapter: 14 (Page no: 183) A simple nutrient-based production model for the growing pig. Author(s): Boisen, S.
Chapter: 15 (Page no: 197) Second-generation dynamic cattle growth and composition models. Author(s): Oltjen, J. W. Pleasants, A. B. Soboleva, T. K. Oddy, V. H.
Chapter: 16 (Page no: 211) Modelling interactions between cow milk yield and growth of its suckling calf. Author(s): Blanc, F. Agabriel, J. Sabatier, P.
Chapter: 17 (Page no: 227) A mechanistic dynamic model of beef cattle growth. Author(s): Hoch, T. Agabriel, J.
Chapter: 18 (Page no: 241) Modelling nutrient utilization in growing cattle subjected to short or long periods of moderate to severe undernutrition. Author(s): Witten, G. Q. Richardson, F. D.
Chapter: 19 (Page no: 253) An integrated cattle and crop production model to develop whole-farm nutrient management plans. Author(s): Tylutki, T. P. Fox, D. G.
Chapter: 20 (Page no: 263) Modelling nutrient utilization by livestock grazing semiarid rangeland. Author(s): Richardson, F. D. Hahn, B. D. Schoeman, S. J.
Chapter: 21 (Page no: 281) Using the cornell net carbohydrate and protein system model to evaluate the effects of variation in maize silage quality on a dairy farm. Author(s): Tylutki, T. P. Fox, D. G. McMahon, M. McMahon, P.
Chapter: 22 (Page no: 289) Challenge and improvement of a model of post-absorptive metabolism in dairy cattle. Author(s): McNamara, J. P. Phillips, G. J.
Chapter: 23 (Page no: 303) A rodent model of protein turnover to determine protein synthesis, amino acid channelling and recycling rates in tissues. Author(s): Johnson, H. A. Baldwin, R. L. Calvert, C. C.
Chapter: 24 (Page no: 317) Modelling relationships between homoeorhetic and homoeostatic control of metabolism: application to growing pigs. Author(s): Sauvant, D. Lovatto, P. A.
Chapter: 25 (Page no: 329) Model for the interpretation of energy metabolism in farm animals. Author(s): Chudy, A.
Chapter: 26 (Page no: 347) Linear models of nitrogen utilization in dairy cows. Author(s): Kebreab, E. Allison, R. Mansbridge, R. Beever, D. E. France, J.
Chapter: 27 (Page no: 353) Isotope dilution models for partitioning amino acid uptake by the liver, mammary gland and hindlimb tissues of ruminants. Author(s): Crompton, L. A. France, J. Bequette, B. J. Maas, J. A. Hanigan, M. D. Lomax, M. A. Dijkstra, J.
Chapter: 28 (Page no: 361) The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: the CPM dairy project. Author(s): Boston, R. C. Fox, D. G. Sniffen, C. Janczewski, E. Munson, R. Chalupa, W.
Chapter: 29 (Page no: 379) The utilization of prediction models to optimize farm animal production systems: the case of a growing pig model. Author(s): Bailleul, P. J. dit Bernier, J. F. Milgen, J. van Sauvant, D. Pomar, C.
Chapter: 30 (Page no: 393) A pig model for feed evaluation. Author(s): Danfær, A.

Chapter details

  • Author Affiliation
  • Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Box 7024, 750 07 Uppsala, Sweden.
  • Year of Publication
  • 2000
  • ISBN
  • 9780851994499
  • Record Number
  • 20083014687