Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Modelling nutrient utilization in farm animals.

Book cover for Modelling nutrient utilization in farm animals.

Description

This book presents edited and revised versions of papers presented at the Fifth International Workshop on Modelling Nutrient Utilization in Farm Animals, held at the University of Cape Town, Cape Town, South Africa, 25-28 October 1999. There are 31 chapters and 6 sections entitled ruminal metabolism, absorption and metabolism, growth and development, ruminant production in various situations, nutr...

Metrics

Chapter 10 (Page no: 127)

Evaluation of a representation of the limiting amino acid theory for milk protein synthesis.

A model describing amino acid (AA) metabolism by the mammary glands of the lactating cow has been constructed (Hanigan et al., 2000a). Milk protein production was predicted using a mathematical procedure to determine which among histidine (His), lysine (Lys), methionine (Met), threonine (Thr) and tyrosine plus phenylalanine (TP) was most limiting for milk protein synthesis. The minimum protein synthetic flux determined the overall rate of protein synthesis. The ability of the model to predict substrate removal and milk protein output was assessed, using the parameterization data (reference data) and an independent data set assembled from the literature (literature data). When the reference data were simulated, the model generally fitted the uptake data well. However, the model predicted milk protein yields poorly. Of the four experiments contained in the reference data set, only one experiment (C6) contained complete data for all driving AA. The model accounted for 53% of the observed variation in milk protein yields for C6, suggesting that inadequate data were the cause of inaccurate simulations for the remaining experiments in the reference data set. The model explained 43% of the observed variation in milk protein yields when the literature data set was simulated. Adoption of an alternative representation of milk protein synthesis, wherein all five driving AA affected milk protein synthesis simultaneously in a linear additive manner, resulted in a reduction in the accuracy of predictions of milk protein yields when C6 or the literature data set was simulated. Use of a Michaelis-Menten equation form to describe milk protein synthesis resulted in slight improvements in accuracy when the C6 data set was simulated and a reduction in accuracy when the literature data set was simulated. After fitting sensitivity coefficients for a modified Michaelis-Menten equation to the literature data, the model described 60% of the observed variation in milk protein output. Attempts to derive sensitivity coefficients for the linear additive equation were unsuccessful, due to model instability caused by the equation. Based on the results herein, a modified version of the Michaelis-Menten equation appeared to represent the effects of essential AA effects on milk protein synthesis better than an equation considering a single limiting AA.

Other chapters from this book

Chapter: 1 (Page no: 11) The role of thermodynamics in controlling rumen metabolism. Author(s): Kohn, R. A. Boston, R. C.
Chapter: 2 (Page no: 25) Modelling lipid metabolism in the rumen. Author(s): Dijkstra, J. Gerrits, W. J. J. Bannink, A. France, J.
Chapter: 3 (Page no: 37) Towards a more accurate representation of fermentation in mathematical models of the rumen. Author(s): Nagorcka, B. N. Gordon, G. L. R. Dynes, R. A.
Chapter: 4 (Page no: 49) Simple allometric models to predict rumen feed passage rate in domestic ruminants. Author(s): Cannas, A. Soest, P. J. van
Chapter: 5 (Page no: 63) Ruminal metabolism of buffersoluble proteins, peptides and amino acids in vitro. Author(s): Udén, P.
Chapter: 6 (Page no: 73) Models to interpret degradation profiles obtained from in vitro and in situ incubation of ruminant feeds. Author(s): López, S. France, J. Dijkstra, J. Dhanoa, M. S.
Chapter: 7 (Page no: 87) Modelling production and portal appearance of volatile fatty acids in dairy cows. Author(s): Bannink, A. Kogut, J. Dijkstra, J. France, J. Tamminga, S. Vuuren, A. M. van
Chapter: 8 (Page no: 103) Modelling energy expenditure in pigs. Author(s): Milgen, J. van Noblet, J.
Chapter: 9 (Page no: 115) Aspects of modelling kidney dynamics. Author(s): Robson, B. Vlieg, M.
Chapter: 11 (Page no: 145) Multiple-entry urea kinetic model: effects of incomplete data collection. Author(s): Zuur, G. Russell, K. Lobley, G. E.
Chapter: 12 (Page no: 163) Evaluation of a growth model of preruminant calves and modifications to simulate shortterm responses to changes in protein intake. Author(s): Gerrits, W. J. J. Togt, P. L. van der Dijkstra, J. France, J.
Chapter: 13 (Page no: 175) Simulation of the development of adipose tissue in beef cattle. Author(s): Sainz, R. D. Hasting, E.
Chapter: 14 (Page no: 183) A simple nutrient-based production model for the growing pig. Author(s): Boisen, S.
Chapter: 15 (Page no: 197) Second-generation dynamic cattle growth and composition models. Author(s): Oltjen, J. W. Pleasants, A. B. Soboleva, T. K. Oddy, V. H.
Chapter: 16 (Page no: 211) Modelling interactions between cow milk yield and growth of its suckling calf. Author(s): Blanc, F. Agabriel, J. Sabatier, P.
Chapter: 17 (Page no: 227) A mechanistic dynamic model of beef cattle growth. Author(s): Hoch, T. Agabriel, J.
Chapter: 18 (Page no: 241) Modelling nutrient utilization in growing cattle subjected to short or long periods of moderate to severe undernutrition. Author(s): Witten, G. Q. Richardson, F. D.
Chapter: 19 (Page no: 253) An integrated cattle and crop production model to develop whole-farm nutrient management plans. Author(s): Tylutki, T. P. Fox, D. G.
Chapter: 20 (Page no: 263) Modelling nutrient utilization by livestock grazing semiarid rangeland. Author(s): Richardson, F. D. Hahn, B. D. Schoeman, S. J.
Chapter: 21 (Page no: 281) Using the cornell net carbohydrate and protein system model to evaluate the effects of variation in maize silage quality on a dairy farm. Author(s): Tylutki, T. P. Fox, D. G. McMahon, M. McMahon, P.
Chapter: 22 (Page no: 289) Challenge and improvement of a model of post-absorptive metabolism in dairy cattle. Author(s): McNamara, J. P. Phillips, G. J.
Chapter: 23 (Page no: 303) A rodent model of protein turnover to determine protein synthesis, amino acid channelling and recycling rates in tissues. Author(s): Johnson, H. A. Baldwin, R. L. Calvert, C. C.
Chapter: 24 (Page no: 317) Modelling relationships between homoeorhetic and homoeostatic control of metabolism: application to growing pigs. Author(s): Sauvant, D. Lovatto, P. A.
Chapter: 25 (Page no: 329) Model for the interpretation of energy metabolism in farm animals. Author(s): Chudy, A.
Chapter: 26 (Page no: 347) Linear models of nitrogen utilization in dairy cows. Author(s): Kebreab, E. Allison, R. Mansbridge, R. Beever, D. E. France, J.
Chapter: 27 (Page no: 353) Isotope dilution models for partitioning amino acid uptake by the liver, mammary gland and hindlimb tissues of ruminants. Author(s): Crompton, L. A. France, J. Bequette, B. J. Maas, J. A. Hanigan, M. D. Lomax, M. A. Dijkstra, J.
Chapter: 28 (Page no: 361) The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: the CPM dairy project. Author(s): Boston, R. C. Fox, D. G. Sniffen, C. Janczewski, E. Munson, R. Chalupa, W.
Chapter: 29 (Page no: 379) The utilization of prediction models to optimize farm animal production systems: the case of a growing pig model. Author(s): Bailleul, P. J. dit Bernier, J. F. Milgen, J. van Sauvant, D. Pomar, C.
Chapter: 30 (Page no: 393) A pig model for feed evaluation. Author(s): Danfær, A.

Chapter details

  • Author Affiliation
  • Purina Mills, Inc., St Louis, MO 63144, USA.
  • Year of Publication
  • 2000
  • ISBN
  • 9780851994499
  • Record Number
  • 20083014692