Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Modelling nutrient utilization in farm animals.

Book cover for Modelling nutrient utilization in farm animals.

Description

This book presents edited and revised versions of papers presented at the Fifth International Workshop on Modelling Nutrient Utilization in Farm Animals, held at the University of Cape Town, Cape Town, South Africa, 25-28 October 1999. There are 31 chapters and 6 sections entitled ruminal metabolism, absorption and metabolism, growth and development, ruminant production in various situations, nutr...

Metrics

Chapter 20 (Page no: 263)

Modelling nutrient utilization by livestock grazing semiarid rangeland.

Planning and management of rangeland production systems are difficult as rainfall, forage production and composition and animal productivity all vary widely between years, between regions and within landscapes. Furthermore, behaviour of the system in a specific year may be influenced by conditions in previous years. An objective of modelling is to increase understanding of the mechanisms within the system that influence the effects of rainfall, stocking rates and management strategies on the productivity of both vegetation and livestock in the short and long term. Nutrient utilization by domestic livestock is the link between the animal and plant components of the system. Modelling such complex systems presents some particular and interrelated problems. Firstly, the time scales which characterize the individual processes of the system vary from hours for rumen fermentation to years for changes in populations of different plant species. Long-term changes in rangelands depend on the cumulative effects of short-term processes. Secondly, simulation of at least 100 years is necessary for patterns of vegetation changes in relation to management strategies to emerge and because stochastic features such as rainfall, frost and fire drive the system, runs must be replicated. Consequently detailed mechanistic models of the whole system are unsuitable for simulating rangeland productivity in the long term. Thirdly, if simple models are used the necessary detail of representation of specific processes changes with changes in vegetation and in management strategies. Instead of building a complex model of the whole system, a hierachy of dynamic computer models is being developed. A mechanistic model simulates the availablity of forage and the performance of individual breeding and growing animals on a daily basis. This model has deterministic submodels of diet selection, intake, digestion and partition of nutrients between milk, conceptus, body protein and fat. Model output shows that the total amount of rainfall, its distribution during the season and stocking rate all affect the performance of the system. The output of extensive runs of the mechanistic model are encapsulated in a few simple formulae for each vegetation state to represent plant and animal dynamics in a long-term model of a rangeland supporting cattle and goats. This model may be used to show how various management strategies influence long-term responses of the system in terms of vegetation state and livestock production.

Other chapters from this book

Chapter: 1 (Page no: 11) The role of thermodynamics in controlling rumen metabolism. Author(s): Kohn, R. A. Boston, R. C.
Chapter: 2 (Page no: 25) Modelling lipid metabolism in the rumen. Author(s): Dijkstra, J. Gerrits, W. J. J. Bannink, A. France, J.
Chapter: 3 (Page no: 37) Towards a more accurate representation of fermentation in mathematical models of the rumen. Author(s): Nagorcka, B. N. Gordon, G. L. R. Dynes, R. A.
Chapter: 4 (Page no: 49) Simple allometric models to predict rumen feed passage rate in domestic ruminants. Author(s): Cannas, A. Soest, P. J. van
Chapter: 5 (Page no: 63) Ruminal metabolism of buffersoluble proteins, peptides and amino acids in vitro. Author(s): Udén, P.
Chapter: 6 (Page no: 73) Models to interpret degradation profiles obtained from in vitro and in situ incubation of ruminant feeds. Author(s): López, S. France, J. Dijkstra, J. Dhanoa, M. S.
Chapter: 7 (Page no: 87) Modelling production and portal appearance of volatile fatty acids in dairy cows. Author(s): Bannink, A. Kogut, J. Dijkstra, J. France, J. Tamminga, S. Vuuren, A. M. van
Chapter: 8 (Page no: 103) Modelling energy expenditure in pigs. Author(s): Milgen, J. van Noblet, J.
Chapter: 9 (Page no: 115) Aspects of modelling kidney dynamics. Author(s): Robson, B. Vlieg, M.
Chapter: 10 (Page no: 127) Evaluation of a representation of the limiting amino acid theory for milk protein synthesis. Author(s): Hanigan, M. D. France, J. Crompton, L. A. Bequette, B. J.
Chapter: 11 (Page no: 145) Multiple-entry urea kinetic model: effects of incomplete data collection. Author(s): Zuur, G. Russell, K. Lobley, G. E.
Chapter: 12 (Page no: 163) Evaluation of a growth model of preruminant calves and modifications to simulate shortterm responses to changes in protein intake. Author(s): Gerrits, W. J. J. Togt, P. L. van der Dijkstra, J. France, J.
Chapter: 13 (Page no: 175) Simulation of the development of adipose tissue in beef cattle. Author(s): Sainz, R. D. Hasting, E.
Chapter: 14 (Page no: 183) A simple nutrient-based production model for the growing pig. Author(s): Boisen, S.
Chapter: 15 (Page no: 197) Second-generation dynamic cattle growth and composition models. Author(s): Oltjen, J. W. Pleasants, A. B. Soboleva, T. K. Oddy, V. H.
Chapter: 16 (Page no: 211) Modelling interactions between cow milk yield and growth of its suckling calf. Author(s): Blanc, F. Agabriel, J. Sabatier, P.
Chapter: 17 (Page no: 227) A mechanistic dynamic model of beef cattle growth. Author(s): Hoch, T. Agabriel, J.
Chapter: 18 (Page no: 241) Modelling nutrient utilization in growing cattle subjected to short or long periods of moderate to severe undernutrition. Author(s): Witten, G. Q. Richardson, F. D.
Chapter: 19 (Page no: 253) An integrated cattle and crop production model to develop whole-farm nutrient management plans. Author(s): Tylutki, T. P. Fox, D. G.
Chapter: 21 (Page no: 281) Using the cornell net carbohydrate and protein system model to evaluate the effects of variation in maize silage quality on a dairy farm. Author(s): Tylutki, T. P. Fox, D. G. McMahon, M. McMahon, P.
Chapter: 22 (Page no: 289) Challenge and improvement of a model of post-absorptive metabolism in dairy cattle. Author(s): McNamara, J. P. Phillips, G. J.
Chapter: 23 (Page no: 303) A rodent model of protein turnover to determine protein synthesis, amino acid channelling and recycling rates in tissues. Author(s): Johnson, H. A. Baldwin, R. L. Calvert, C. C.
Chapter: 24 (Page no: 317) Modelling relationships between homoeorhetic and homoeostatic control of metabolism: application to growing pigs. Author(s): Sauvant, D. Lovatto, P. A.
Chapter: 25 (Page no: 329) Model for the interpretation of energy metabolism in farm animals. Author(s): Chudy, A.
Chapter: 26 (Page no: 347) Linear models of nitrogen utilization in dairy cows. Author(s): Kebreab, E. Allison, R. Mansbridge, R. Beever, D. E. France, J.
Chapter: 27 (Page no: 353) Isotope dilution models for partitioning amino acid uptake by the liver, mammary gland and hindlimb tissues of ruminants. Author(s): Crompton, L. A. France, J. Bequette, B. J. Maas, J. A. Hanigan, M. D. Lomax, M. A. Dijkstra, J.
Chapter: 28 (Page no: 361) The conversion of a scientific model describing dairy cow nutrition and production to an industry tool: the CPM dairy project. Author(s): Boston, R. C. Fox, D. G. Sniffen, C. Janczewski, E. Munson, R. Chalupa, W.
Chapter: 29 (Page no: 379) The utilization of prediction models to optimize farm animal production systems: the case of a growing pig model. Author(s): Bailleul, P. J. dit Bernier, J. F. Milgen, J. van Sauvant, D. Pomar, C.
Chapter: 30 (Page no: 393) A pig model for feed evaluation. Author(s): Danfær, A.

Chapter details

  • Author Affiliation
  • Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa.
  • Year of Publication
  • 2000
  • ISBN
  • 9780851994499
  • Record Number
  • 20083014702