Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Livestock production and climate change.

Book cover for Livestock production and climate change.

Description

This 395-paged-book aims to raise awareness among scientists, academics, students, livestock farmers and policy makers of the twin inter-related and inter-dependent complex mechanisms of livestock rearing and climate change. The contents are divided into sections: one on livestock production, one on climate change and one on enteric methane amelioration. In the first section, decisive issues such ...

Metrics

Chapter 10 (Page no: 146)

Carbon sequestration and animal-agriculture: relevance and strategies to cope with climate change.

Carbon sequestration is an important pathway to stabilize the environment with minimum effects of climate change. Farming systems provide a non-compensated service to society by removing atmospheric carbon generated from fossil fuel combustion, feed production, land restoration, deforestation, biomass burning and drainage of wetlands. The resultant increase in the global emissions of carbon is calculated at 270 Gt, and increasing at the rate of 4 billion tonnes year-1. Strategies to maximize carbon sequestration through enhanced farming practices, particularly in crop-animal systems, are thus an important priority to reduce global warming. These pathways also respond to agricultural productivity in the multifaceted, less favoured rainfed environments. Sustainable animal-agriculture requires an understanding of crop-animal interactions and integrated natural resource management (NRM), demonstrated in the development of underestimated silvopastoral systems (tree crops and ruminants). It has been reported that mitigation can potentially sequester carbon by 0.70-3.04 t carbon dioxide (CO2)-equivalent (eq) ha-1 year-1, reduce methane (CH4) emission by 0.02 t CO2-eq ha-1 year-1 and reduce nitrous oxide (N2O) emissions by 0.02-2.30 t CO2-eq ha-1 year-1. Good agronomic practices potentially enhance carbon sinks and soil organic matter through leguminous trees (e.g. Leucaena), integrated nutrient management, regulation of grazing pressure and use of animal manure. These interventions significantly increase ecosystem services, crop and animal productivity, reduce CH4 emissions and mitigate N2O emissions and ammonia volatilization. Research and development (R&D) efforts on the characterization of forages and research on heat stress and economic animal productivity are urgently needed. Multinational interdisciplinary R&D, investment to reduce the effects of climate change, enhancement of the value of C sinks and food security are high priorities. These issues are rarely and inadequately researched in South-east Asia, West and East Africa, Latin America and the Caribbean and merit collective action.

Other chapters from this book

Chapter: 1 (Page no: 1) Overview. Author(s): Prasad, C. S. Malik, P. K. Bhatta, R.
Chapter: 2 (Page no: 8) Feed resources vis-à-vis livestock and fish productivity in a changing climate. Author(s): Blümmel, M. Haileslassie, A. Herrero, M. Beveridge, M. Phillips, M. Havlik, P.
Chapter: 3 (Page no: 25) Strategies for alleviating abiotic stress in livestock. Author(s): Sejian, V. Iqbal Hyder Malik, P. K. Soren, N. M. Mech, A. Mishra, A. Ravindra, J. P.
Chapter: 4 (Page no: 61) Nitrogen emissions from animal agricultural systems and strategies to protect the environment. Author(s): Kohn, R. A.
Chapter: 5 (Page no: 74) Nutritional strategies for minimizing phosphorus pollution from the livestock industry. Author(s): Ray, P. P. Knowlton, K. F.
Chapter: 6 (Page no: 90) Metagenomic approaches in harnessing gut microbial diversity. Author(s): Thulasi, A. Lyju Jose Chandrasekharaiah, M. Rajendran, D. Prasad, C. S.
Chapter: 7 (Page no: 100) Proteomics in studying the molecular mechanism of fibre degradation. Author(s): Singh, N. K.
Chapter: 8 (Page no: 111) Perspective on livestock-generated GHGs and climate. Author(s): Takahashi, J.
Chapter: 9 (Page no: 125) Carbon footprints of food of animal origin. Author(s): Flachowsky, G.
Chapter: 11 (Page no: 162) Climate change: impacts on livestock diversity in tropical countries. Author(s): Banik, S. Pankaj, P. K. Naskar, S.
Chapter: 12 (Page no: 183) Climate change: effects on animal reproduction. Author(s): Jyotirmoy Ghosh Dhara, S. K. Malik, P. K.
Chapter: 13 (Page no: 202) Climate change: impact of meat production. Author(s): Musalia, L. M.
Chapter: 14 (Page no: 214) Indigenous livestock resources in a changing climate: Indian perspective. Author(s): Ahlawat, S. P. S. Pushpendra Kumar Kush Shrivastava Sahoo, N. R.
Chapter: 15 (Page no: 229) Enteric methane emission: status, mitigation and future challenges - an Indian perspective. Author(s): Raghavendra Bhatta Malik, P. K. Prasad, C. S.
Chapter: 16 (Page no: 245) Thermodynamic and kinetic control of methane emissions from ruminants. Author(s): Kohn, R. A.
Chapter: 17 (Page no: 263) Ionophores: a tool for improving ruminant production and reducing environmental impact. Author(s): Bell, N. Wickersham, T. Sharma, V. Callaway, T.
Chapter: 18 (Page no: 273) Residual feed intake and breeding approaches for enteric methane mitigation. Author(s): Berry, D. P. Lassen, J. Haas, Y. de
Chapter: 19 (Page no: 292) Acetogenesis as an alternative to methanogenesis in the rumen. Author(s): Gagen, E. J. Denman, S. E. McSweeney, C. S.
Chapter: 20 (Page no: 304) Immunization and tannins in livestock enteric methane amelioration. Author(s): Uyeno, Y.
Chapter: 21 (Page no: 318) Phage therapy in livestock methane amelioration. Author(s): Gilbert, R. A. Ouwerkerk, D. Klieve, A. V.
Chapter: 22 (Page no: 336) Feed-based approaches in enteric methane amelioration. Author(s): Malik, P. K. Bhatta, R. Soren, N. M. Sejian, V. Mech, A. Prasad, K. S. Prasad, C. S.
Chapter: 23 (Page no: 360) Methanotrophs in enteric methane mitigation. Author(s): Soren, N. M. Malik, P. K. Sejian, V.
Chapter: 24 (Page no: 376) Summary. Author(s): Malik, P. K. Bhatta, R. Saravanan, M. Baruah, L.