Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

 

Continuing to use www.cabi.org  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

Livestock production and climate change.

Book cover for Livestock production and climate change.

Description

This 395-paged-book aims to raise awareness among scientists, academics, students, livestock farmers and policy makers of the twin inter-related and inter-dependent complex mechanisms of livestock rearing and climate change. The contents are divided into sections: one on livestock production, one on climate change and one on enteric methane amelioration. In the first section, decisive issues such ...

Metrics

Chapter 15 (Page no: 229)

Enteric methane emission: status, mitigation and future challenges - an Indian perspective.

1% per annum. To stabilize this greenhouse gas in the atmosphere, global CH4 production needs to be reduced by 10-20%. Ruminants fed on low-quality feed/fodder produce over 75% of the CH4 generated by ruminants worldwide. Strategic supplementation to improve digestive efficiency in these animals could halve this CH4 production per unit of feed consumed. Supplementation to improve the efficiency of feed utilization coupled with increased product output may thus reduce CH4 production per unit of milk or meat by a factor of 4-6. The dietary/nutritional strategy that improves productivity with no potential negative effects on livestock health and production is cost-effective and has a better chance of being adopted. Other strategies (biotechnologies, additives) are promising, but the diversity and plasticity of the functions of the rumen bacterial and methanogenic communities may be the limiting factor for their successful application. In addition, the environmental impacts of strategies should also be taken into consideration. A global vision of production systems that considers all greenhouse gas emissions from the animal up to the farm scale, as well as grassland use, is essential. Further, the sustainability of CH4-suppressing strategies is an important issue. An effort is made in this chapter to address enteric CH4 emissions and their current status. An overview on the possible ameliorative strategies has also been given.

Other chapters from this book

Chapter: 1 (Page no: 1) Overview. Author(s): Prasad, C. S. Malik, P. K. Bhatta, R.
Chapter: 2 (Page no: 8) Feed resources vis-à-vis livestock and fish productivity in a changing climate. Author(s): Blümmel, M. Haileslassie, A. Herrero, M. Beveridge, M. Phillips, M. Havlik, P.
Chapter: 3 (Page no: 25) Strategies for alleviating abiotic stress in livestock. Author(s): Sejian, V. Iqbal Hyder Malik, P. K. Soren, N. M. Mech, A. Mishra, A. Ravindra, J. P.
Chapter: 4 (Page no: 61) Nitrogen emissions from animal agricultural systems and strategies to protect the environment. Author(s): Kohn, R. A.
Chapter: 5 (Page no: 74) Nutritional strategies for minimizing phosphorus pollution from the livestock industry. Author(s): Ray, P. P. Knowlton, K. F.
Chapter: 6 (Page no: 90) Metagenomic approaches in harnessing gut microbial diversity. Author(s): Thulasi, A. Lyju Jose Chandrasekharaiah, M. Rajendran, D. Prasad, C. S.
Chapter: 7 (Page no: 100) Proteomics in studying the molecular mechanism of fibre degradation. Author(s): Singh, N. K.
Chapter: 8 (Page no: 111) Perspective on livestock-generated GHGs and climate. Author(s): Takahashi, J.
Chapter: 9 (Page no: 125) Carbon footprints of food of animal origin. Author(s): Flachowsky, G.
Chapter: 10 (Page no: 146) Carbon sequestration and animal-agriculture: relevance and strategies to cope with climate change. Author(s): Devendra, C.
Chapter: 11 (Page no: 162) Climate change: impacts on livestock diversity in tropical countries. Author(s): Banik, S. Pankaj, P. K. Naskar, S.
Chapter: 12 (Page no: 183) Climate change: effects on animal reproduction. Author(s): Jyotirmoy Ghosh Dhara, S. K. Malik, P. K.
Chapter: 13 (Page no: 202) Climate change: impact of meat production. Author(s): Musalia, L. M.
Chapter: 14 (Page no: 214) Indigenous livestock resources in a changing climate: Indian perspective. Author(s): Ahlawat, S. P. S. Pushpendra Kumar Kush Shrivastava Sahoo, N. R.
Chapter: 16 (Page no: 245) Thermodynamic and kinetic control of methane emissions from ruminants. Author(s): Kohn, R. A.
Chapter: 17 (Page no: 263) Ionophores: a tool for improving ruminant production and reducing environmental impact. Author(s): Bell, N. Wickersham, T. Sharma, V. Callaway, T.
Chapter: 18 (Page no: 273) Residual feed intake and breeding approaches for enteric methane mitigation. Author(s): Berry, D. P. Lassen, J. Haas, Y. de
Chapter: 19 (Page no: 292) Acetogenesis as an alternative to methanogenesis in the rumen. Author(s): Gagen, E. J. Denman, S. E. McSweeney, C. S.
Chapter: 20 (Page no: 304) Immunization and tannins in livestock enteric methane amelioration. Author(s): Uyeno, Y.
Chapter: 21 (Page no: 318) Phage therapy in livestock methane amelioration. Author(s): Gilbert, R. A. Ouwerkerk, D. Klieve, A. V.
Chapter: 22 (Page no: 336) Feed-based approaches in enteric methane amelioration. Author(s): Malik, P. K. Bhatta, R. Soren, N. M. Sejian, V. Mech, A. Prasad, K. S. Prasad, C. S.
Chapter: 23 (Page no: 360) Methanotrophs in enteric methane mitigation. Author(s): Soren, N. M. Malik, P. K. Sejian, V.
Chapter: 24 (Page no: 376) Summary. Author(s): Malik, P. K. Bhatta, R. Saravanan, M. Baruah, L.