Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.


Continuing to use  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

The handbook of microbial metabolism of amino acids.

Book cover for The handbook of microbial metabolism of amino acids.


This handbook explores the most recent advances in knowledge regarding amino acid metabolism in different microbial organisms, including bacteria, yeasts, fungi, protozoa and nematodes, with emphasis on the similarities and differences in the way these organisms handle amino acids. Inclusive of 9 parts with 32 chapters overall, the discussions are presented per specific amino acid metabolism, incl...


Chapter 2 (Page no: 15)

Glutamate decarboxylase in bacteria.

γ-Aminobutyrate (GABA) is a non-proteinaceous amino acid which plays different roles in the living systems. GABA is biochemically produced by the irreversible α-decarboxylation of L-glutamate catalysed by glutamate decarboxylase (Gad), a widespread enzyme distributed among eukaryotes and prokaryotes. Structural features of the plant, mammalian and bacterial Gads are reported in the literature. In pathogenic bacteria, Gad activity has been linked to protection from acid stress, but the possibility cannot be excluded that it might perform other physiological roles. Indeed, the screening of lactic acid bacteria (LAB) based on their capacity to synthesize GABA opens a new perspective for the production of GABA-containing dairy foods. The aim of this chapter is to provide an overview of the best characterized Gad enzymes in pathogenic and non-pathogenic bacteria, along with a description of the potential use of Gad as a source of GABA in functional foods and in biotechnological products.

Other chapters from this book

Chapter: 1 (Page no: 1) Structural and functional properties of glutamate dehydrogenases. Author(s): Brown, S. Simcock, D. C.
Chapter: 3 (Page no: 29) The yeast γ-aminobutyrate (GABA) shunt. Author(s): Locy, R. D.
Chapter: 4 (Page no: 49) Lysine biosynthesis in microorganisms. Author(s): Hudson, A. O. Savka, M. A. Pearce, F. G. Dobson, R. C. J.
Chapter: 5 (Page no: 70) Arginine deiminase in microorganisms. Author(s): Leroy, F. Charlier, D.
Chapter: 6 (Page no: 81) Arginase and microbial pathogenesis in the lungs. Author(s): Lucas, M. J. R. Caldwell, R. W. Fulton, D. Chakraborty, T. Lucas, R.
Chapter: 7 (Page no: 91) Arginine and methionine as precursors of polyamines in trypanosomatids. Author(s): Pérez-Pertejo, Y. Morán, J. M. Fouce, R. B.
Chapter: 8 (Page no: 116) Ornithine and lysine decarboxylation in bacteria. Author(s): Lucas, P. M.
Chapter: 9 (Page no: 128) The role of nitric oxide signalling in yeast stress response and cell death. Author(s): Ludovico, P. Sampaio-Marques, B. Osório, N. Rodrigues, F.
Chapter: 10 (Page no: 142) Hydroxyproline metabolism in microorganisms. Author(s): Watanabe, S.
Chapter: 11 (Page no: 153) Cellular responses to serine in yeast. Author(s): Dawes, I. W. Kornfeld, G. D.
Chapter: 12 (Page no: 170) Threonine degradation in hyperthermophilic organisms. Author(s): Bashir, Q. Rashid, N. Akhtar, M.
Chapter: 13 (Page no: 179) Methionine synthesis in microbes. Author(s): Wencker, F. Ziebuhr, W.
Chapter: 14 (Page no: 198) Regulation of sulfur amino acid metabolism in fungi. Author(s): Paietta, J. V.
Chapter: 15 (Page no: 211) Insights on O-acetylserine sulfhydrylase structure, function and biopharmaceutical applications. Author(s): Campanini, B. Mozzarelli, A.
Chapter: 16 (Page no: 223) Metabolic engineering of Corynebacterium glutamicum for L-valine production. Author(s): Wang, X. Quinn, P. J.
Chapter: 17 (Page no: 234) Flavour formation from leucine by lactic acid bacteria (LAB). Author(s): Afzal, M. I. Delaunay, S. Cailliez-Grimal, C.
Chapter: 18 (Page no: 244) Microbial degradation of phenolic amino acids. Author(s): Holmes, D. E. Smith, J. A.
Chapter: 19 (Page no: 256) The biosynthesis of tryptophan. Author(s): Parker, E. J.
Chapter: 20 (Page no: 267) Tryptophan biosynthesis in bacteria: drug targets and immunology. Author(s): Lott, J. S.
Chapter: 21 (Page no: 277) The kynurenine pathway of tryptophan metabolism in microorganisms. Author(s): Phillips, R. S.
Chapter: 22 (Page no: 291) Histidine degradation in bacteria. Author(s): Nieuwkoop, A. J. Bender, R. A.
Chapter: 23 (Page no: 304) The histidine phosphatase superfamily in pathogenic bacteria. Author(s): Coker, O. O. Palittapongarnpim, P.
Chapter: 24 (Page no: 315) Functions and metabolism of D-amino acids in microorganisms. Author(s): Takahashi, S. Abe, K. Shibata, K. Kera, Y.
Chapter: 25 (Page no: 332) Pathways of utilization of D-amino acids in higher organisms. Author(s): D'Mello, J. P. F.
Chapter: 26 (Page no: 352) Rhizobial amino acid metabolism: polyamine biosynthesis and functions. Author(s): Dunn, M. F.
Chapter: 27 (Page no: 371) Working together: amino acid biosynthesis in endosymbiont-harbouring Trypanosomatidae. Author(s): Alves, J. M. P.
Chapter: 28 (Page no: 384) Amino acid metabolism in helminths. Author(s): Simpson, H. V. Umair, S.
Chapter: 29 (Page no: 398) Microbial degradation of amino acids in anoxic environments. Author(s): Parthasarathy, A. Chowdhury, N. P.
Chapter: 30 (Page no: 418) Utilization of N-methylated amino acids by bacteria. Author(s): Wargo, M. J.
Chapter: 31 (Page no: 433) Biofilm formation: amino acid biomarkers in Candida albicans. Author(s): Cao, Y. Liao, Z.
Chapter: 32 (Page no: 444) Recent advances underpinning innovative strategies for the future. Author(s): D'Mello, J. P. F.

Chapter details

  • Author Affiliation
  • Istituto Pasteur Italia - Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Latina, Italy.
  • Year of Publication
  • 2017
  • ISBN
  • 9781780647234
  • Record Number
  • 20173125367