Cookies on CAB eBooks

Like most websites we use cookies. This is to ensure that we give you the best experience possible.


Continuing to use  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

CAB eBooks

Ebooks on agriculture and the applied life sciences from CAB International

CABI Book Chapter

The handbook of microbial metabolism of amino acids.

Book cover for The handbook of microbial metabolism of amino acids.


This handbook explores the most recent advances in knowledge regarding amino acid metabolism in different microbial organisms, including bacteria, yeasts, fungi, protozoa and nematodes, with emphasis on the similarities and differences in the way these organisms handle amino acids. Inclusive of 9 parts with 32 chapters overall, the discussions are presented per specific amino acid metabolism, incl...


Chapter 32 (Page no: 444)

Recent advances underpinning innovative strategies for the future.

It is instructive to evaluate recent evidence as presented in the preceding chapters of this volume. It is immediately clear that significant advances have been reported on the mainstream biochemistry of all the major families of amino acids in a diverse range of microorganisms. Emerging developments include enhanced understanding and manipulation of gene expression, the evaluation of enzyme structure-function relationships, assessment of the relative importance of competing biochemical pathways and elucidation of mechanisms of transcriptional and post-translational regulation. There has also been considerable understanding gained of the peripheral pathways of amino acid metabolism, particularly in certain bacteria. In addition, there is a perceptible shift in focus over recent years towards unlocking practical value for the potential resolution of intractable issues in food quality and safety, pathogen characterization, host-pathogen interactions and drug resistance. This change in emphasis is based on the premise that amino acid metabolism is a fundamental determinant of microbial viability, growth, pathogenicity and virulence.

Other chapters from this book

Chapter: 1 (Page no: 1) Structural and functional properties of glutamate dehydrogenases. Author(s): Brown, S. Simcock, D. C.
Chapter: 2 (Page no: 15) Glutamate decarboxylase in bacteria. Author(s): Giovannercole, F. Pennacchietti, E. Biase, D. de
Chapter: 3 (Page no: 29) The yeast γ-aminobutyrate (GABA) shunt. Author(s): Locy, R. D.
Chapter: 4 (Page no: 49) Lysine biosynthesis in microorganisms. Author(s): Hudson, A. O. Savka, M. A. Pearce, F. G. Dobson, R. C. J.
Chapter: 5 (Page no: 70) Arginine deiminase in microorganisms. Author(s): Leroy, F. Charlier, D.
Chapter: 6 (Page no: 81) Arginase and microbial pathogenesis in the lungs. Author(s): Lucas, M. J. R. Caldwell, R. W. Fulton, D. Chakraborty, T. Lucas, R.
Chapter: 7 (Page no: 91) Arginine and methionine as precursors of polyamines in trypanosomatids. Author(s): Pérez-Pertejo, Y. Morán, J. M. Fouce, R. B.
Chapter: 8 (Page no: 116) Ornithine and lysine decarboxylation in bacteria. Author(s): Lucas, P. M.
Chapter: 9 (Page no: 128) The role of nitric oxide signalling in yeast stress response and cell death. Author(s): Ludovico, P. Sampaio-Marques, B. Osório, N. Rodrigues, F.
Chapter: 10 (Page no: 142) Hydroxyproline metabolism in microorganisms. Author(s): Watanabe, S.
Chapter: 11 (Page no: 153) Cellular responses to serine in yeast. Author(s): Dawes, I. W. Kornfeld, G. D.
Chapter: 12 (Page no: 170) Threonine degradation in hyperthermophilic organisms. Author(s): Bashir, Q. Rashid, N. Akhtar, M.
Chapter: 13 (Page no: 179) Methionine synthesis in microbes. Author(s): Wencker, F. Ziebuhr, W.
Chapter: 14 (Page no: 198) Regulation of sulfur amino acid metabolism in fungi. Author(s): Paietta, J. V.
Chapter: 15 (Page no: 211) Insights on O-acetylserine sulfhydrylase structure, function and biopharmaceutical applications. Author(s): Campanini, B. Mozzarelli, A.
Chapter: 16 (Page no: 223) Metabolic engineering of Corynebacterium glutamicum for L-valine production. Author(s): Wang, X. Quinn, P. J.
Chapter: 17 (Page no: 234) Flavour formation from leucine by lactic acid bacteria (LAB). Author(s): Afzal, M. I. Delaunay, S. Cailliez-Grimal, C.
Chapter: 18 (Page no: 244) Microbial degradation of phenolic amino acids. Author(s): Holmes, D. E. Smith, J. A.
Chapter: 19 (Page no: 256) The biosynthesis of tryptophan. Author(s): Parker, E. J.
Chapter: 20 (Page no: 267) Tryptophan biosynthesis in bacteria: drug targets and immunology. Author(s): Lott, J. S.
Chapter: 21 (Page no: 277) The kynurenine pathway of tryptophan metabolism in microorganisms. Author(s): Phillips, R. S.
Chapter: 22 (Page no: 291) Histidine degradation in bacteria. Author(s): Nieuwkoop, A. J. Bender, R. A.
Chapter: 23 (Page no: 304) The histidine phosphatase superfamily in pathogenic bacteria. Author(s): Coker, O. O. Palittapongarnpim, P.
Chapter: 24 (Page no: 315) Functions and metabolism of D-amino acids in microorganisms. Author(s): Takahashi, S. Abe, K. Shibata, K. Kera, Y.
Chapter: 25 (Page no: 332) Pathways of utilization of D-amino acids in higher organisms. Author(s): D'Mello, J. P. F.
Chapter: 26 (Page no: 352) Rhizobial amino acid metabolism: polyamine biosynthesis and functions. Author(s): Dunn, M. F.
Chapter: 27 (Page no: 371) Working together: amino acid biosynthesis in endosymbiont-harbouring Trypanosomatidae. Author(s): Alves, J. M. P.
Chapter: 28 (Page no: 384) Amino acid metabolism in helminths. Author(s): Simpson, H. V. Umair, S.
Chapter: 29 (Page no: 398) Microbial degradation of amino acids in anoxic environments. Author(s): Parthasarathy, A. Chowdhury, N. P.
Chapter: 30 (Page no: 418) Utilization of N-methylated amino acids by bacteria. Author(s): Wargo, M. J.
Chapter: 31 (Page no: 433) Biofilm formation: amino acid biomarkers in Candida albicans. Author(s): Cao, Y. Liao, Z.